2 research outputs found

    Improving Data Quality by Leveraging Statistical Relational Learning

    Get PDF
    Digitally collected data su ↵ ers from many data quality issues, such as duplicate, incorrect, or incomplete data. A common approach for counteracting these issues is to formulate a set of data cleaning rules to identify and repair incorrect, duplicate and missing data. Data cleaning systems must be able to treat data quality rules holistically, to incorporate heterogeneous constraints within a single routine, and to automate data curation. We propose an approach to data cleaning based on statistical relational learning (SRL). We argue that a formalism - Markov logic - is a natural fit for modeling data quality rules. Our approach allows for the usage of probabilistic joint inference over interleaved data cleaning rules to improve data quality. Furthermore, it obliterates the need to specify the order of rule execution. We describe how data quality rules expressed as formulas in first-order logic directly translate into the predictive model in our SRL framework

    Improving Data Quality by Leveraging Statistical Relational\ud Learning

    Get PDF
    Digitally collected data su\ud ↵\ud ers from many data quality issues, such as duplicate, incorrect, or incomplete data. A common\ud approach for counteracting these issues is to formulate a set of data cleaning rules to identify and repair incorrect, duplicate and\ud missing data. Data cleaning systems must be able to treat data quality rules holistically, to incorporate heterogeneous constraints\ud within a single routine, and to automate data curation. We propose an approach to data cleaning based on statistical relational\ud learning (SRL). We argue that a formalism - Markov logic - is a natural fit for modeling data quality rules. Our approach\ud allows for the usage of probabilistic joint inference over interleaved data cleaning rules to improve data quality. Furthermore, it\ud obliterates the need to specify the order of rule execution. We describe how data quality rules expressed as formulas in first-order\ud logic directly translate into the predictive model in our SRL framework
    corecore